Sign in

User name:(required)

Password:(required)

Join Us

join us

Your Name:(required)

Your Email:(required)

Your Message :

0/2000

When to Use radiation protection solutions?

Author: Shirley

Jun. 10, 2024

Protecting Yourself from Radiation | US EPA

Radiation is part of our life. Background radiationRadiation that is always in the environment. The majority of background radiation occurs naturally and a small fraction comes from man-made elements., coming primarily from natural minerals, is around us all the time. Fortunately, there are very few situations where an average person is exposed to uncontrolled sources of radiation above background. Nevertheless, it is wise to be prepared and know what to do if such a situation arises.

Are you interested in learning more about radiation protection solutions? Contact us today to secure an expert consultation!

One of the best ways to be prepared is to understand the radiation protection principles of time, distance and shielding. During a radiological emergency (a large release of radioactive material into the environment), we can use these principles to help protect ourselves and our families.

On this page:

Time, Distance and Shielding

Time, distance, and shielding actions minimize your exposure to radiation in much the same way as they would to protect you against overexposure to the sun:
 

  • Time: For people who are exposed to

    radiationEnergy given off as either particles or rays.

    in addition to natural background radiation, limiting or minimizing the exposure time reduces the dose from the radiation source.
  • Distance: Just as the heat from a fire reduces as you move further away, the dose of radiation decreases dramatically as you increase your distance from the source.
  • Shielding: Barriers of lead, concrete, or water provide protection from penetrating

    gamma raysA form of ionizing radiation that is made up of weightless packets of energy called photons. Gamma rays can pass completely through the human body; as they pass through, they can cause damage to tissue and DNA.

    and

    x-raysA form of ionizing radiation made up of photons. X-rays are capable of passing completely through the human body. Medical x-rays are the single largest source of man-made radiation exposure.

    . This is why certain radioactive materials are stored under water or in concrete or lead-lined rooms, and why dentists place a lead blanket on patients receiving x-rays of their teeth. Therefore, inserting the proper shield between you and a radiation source will greatly reduce or eliminate the dose you receive.

Radiation Emergencies

In a large scale radiological release, such as a nuclear power plant accident or terrorist incident, the following advice has been tested and proven to provide maximum protection.

If a radiation emergency occurs, you can take actions to protect yourself, your loved ones and your pets: Get Inside, Stay Inside and Stay Tuned. Follow the advice of emergency responders and officials.

Get Inside

In a radiation emergency you may be asked to get inside a building and take shelter for a period of time.

  • This action is called "

    sheltering in placeAn emergency response instruction meaning get inside a building right away. If you can get to a brick or concrete multi-story building or basement within a few minutes, go there.

    ."
  • Get to the middle of the building or a basement, away from doors and windows.
  • Bring pets inside.

Stay Inside

Staying inside will reduce your exposure to radiation.

  • Close windows and doors.
  • Take a shower or wipe exposed parts of your body with a damp cloth.
  • Drink bottled water and eat food in sealed containers.

Stay Tuned

Emergency officials are trained to respond to disaster situations and will provide specific actions to help keep people safe.

  • Get the latest information from radio, television, the Internet, mobile devices, etc.
  • Emergency officials will provide information on where to go to get screened for contamination.

Where to go in a Radiation Emergency

View the Center for Disease Control and Prevention's video, &#;Where to Go in a Radiation Emergency&#; below, or visit the CDC Radiation Emergencies website for additional information.

For more master oscillator power amplifierinformation, please contact us. We will provide professional answers.

Resources

Learn more about protecting yourself from radiation:

  • U.S. Centers for Disease Control and Prevention, Emergency Preparedness and Response: Radiation Emergencies
  • U.S. Department of Homeland Security (DHS) and the Federal Emergency Management Agency (FEMA), Ready.gov 

If you identify or come in contact with a radioactive source, locate and contact your state radiation control office.

Radiation Safety and Protection - StatPearls

Introduction

Radiation safety is a concern for patients, physicians, and staff in many departments, including radiology, interventional cardiology, and surgery. Radiation emitted during fluoroscopic procedures is responsible for the greatest radiation dose for medical staff. Radiation from diagnostic imaging modalities, such as computed tomography, mammography, and nuclear imaging, are minor contributors to the cumulative dose exposures of healthcare personnel. However, any radiation exposure poses a potential risk to both patients and healthcare workers alike.[1]

Radiation protection aims to reduce unnecessary radiation exposure with a goal to minimize the harmful effects of ionizing radiation.[2] In the medical field, ionizing radiation has become an inescapable tool used for the diagnosis and treatment of a variety of medical conditions. As its use has evolved, so have the cumulative doses of lifetime radiation that both patients and medical providers receive. Most radiation exposure in medical settings arises from fluoroscopic imaging, which uses x-rays to obtain dynamic and cinematic functional imaging. Formal radiation protection training helps reduce radiation exposure to medical staff and patients.[3] However, enforcing radiation safety guidelines can be an arduous process, and many interventionalists do not receive formal training in either residency or fellowship on radiation dose reduction. In particular, clinicians or medical staff that use fluoroscopic imaging outside of dedicated radiology or interventional departments have low adherence to radiation safety guidelines. Fluoroscopy is used in many specialties, including orthopedics, urology, interventional radiology, interventional cardiology, vascular surgery, and gastroenterology. As radiation exposure becomes more prevalent, a thorough understanding of radiation exposure risks and dose reduction techniques will be of utmost importance.

There are three basic principles of radiation protection: justification, optimization, and dose limitation. Justification involves an appreciation for the benefits and risks of using radiation for procedures or treatments. Physicians, surgeons, and radiologic personnel all play a key role in educating patients on the potential adverse effects of radiation exposure. The benefits of exposure should be well known and accepted by the medical community. Often, procedures that expose patients to relatively higher doses of radiation&#;for example, interventional vascular procedures&#;are medically necessary, and thus the benefits outweigh the risks. The As Low as Reasonably Achievable (ALARA) principle, defined by the code of federal regulations, was created to ensure that all measures to reduce radiation exposure have been taken while acknowledging that radiation is an integral part of diagnosing and treating patients. Any amount of radiation exposure will increase the risk of stochastic effects, namely the chances of developing malignancy following radiation exposure. These effects are thought to occur as a linear model in which there is no specific threshold to predict whether or not malignancy will develop reliably. For these reasons, the radiologic community teaches protection practices under the ALARA principle.

Function

A basic understanding of the science behind the damaging effects of radiation is crucial in evaluating the different strategies to protect medical professionals and patients. X-rays are composed of high-energy photons within the electromagnetic spectrum. X-rays are notable in comparison to lower energy photons since they are powerful enough to break molecular bonds and ionize atoms.[4] This ionization produces free radicals, chemically active compounds that can indirectly damage DNA.[5] Medical staff and patients can be exposed to x-ray radiation either as scattered x-rays or by direct exposure to the x-ray beam. Scattered x-rays give up part of their energy during the scattering process, and thus energy deposited in tissues from scattered x-rays is lower than directly from the x-ray source. Radiation doses can be expressed in three different ways. The absorbed dose is the radiation deposited in an object and is measured in milligrays (mGy). The equivalent dose is calculated, taking into account the organ-specific radiation exposure, as well as the organ's sensitivity to radiation, and is expressed in millisieverts (mSv). The effective dose is the sum over the entire body of the individual organ equivalent doses and is expressed in millisieverts (mSv). An understanding of these definitions is critical to interpreting dose recommendations. The ICRP's dose recommendations are shown in fig 1.[3] For reference, 20 mSv/year roughly equates to 2 to 3 abdominal and pelvic computed tomography (CT) scans or 7 TO 9 years of background radiation. Exposure surpassing this threshold averaged over five years has been associated with a 1 in lifetime risk of fatal cancer.[6][7][5]

Issues of Concern

Radiation exposure can produce biological effects as either a dose-dependent effect or a dose-dependent probability.[8] Dose-dependent effects are referred to as deterministic effects and occur when a specific exposure threshold has been exceeded. A dose-dependent probability is referred to as a stochastic effect and represents an outcome that occurs with a certain probability but without a defined threshold at which these effects are triggered.[9] Examples of deterministic effects that have been documented in the fields of interventional radiology, cardiology, and radiation treatment include radiation-induced thyroiditis, dermatitis, and hair loss.[10] Stochastic effects are discovered many years after radiation exposure and include the development of cancer.[3] It is important to note that deterministic effects are determined by the cumulative amount of radiation exposure an organ or tissue experiences over time (the lifetime equivalent dose). In comparison, there is a chance that a specific x-ray causes DNA damage that later develops into cancer, a stochastic effect. As the number of x-rays a patient is exposed to increases, the chance of a stochastic effect increases; however, the lifetime equivalent radiation dose does not play a role in stochastic effects. Researching the effects of long-term low-dose exposure to ionizing radiation is difficult because literature is based on epidemiologic data from large radiation exposures at doses that are much higher than is used in the medical setting. Current literature suggests that medical radiation may result in a modest increase in the risk of cataracts, cancer, and possibly hereditary diseases.[6] 

Clinical Significance

The duration of radiation exposure, distance from the radiation source, and physical shielding are the key facets in reducing exposure. The exposure duration can be minimized in several ways. When exposing a patient to radiation, the technician or physician should preplan the required images to avoid unnecessary and redundant exposure. Magnification significantly increases the exposure to the patient; therefore, magnification should be used judiciously.[11] Continuous or live fluoroscopy may be helpful to understand anatomy during procedures better, but standard fluoroscopy machines capture roughly 35 images per second. Decreased exposure can be achieved instead by using pulsed fluoroscopy, which obtains about five images per second without sacrificing imaging quality. Lastly, exposure duration should be limited whenever possible. 

Increasing the distance between the x-ray beam and the part that is being imaged is another way to minimize exposure. The image intensifier or x-ray plate should be as close to the patient as possible, with the x-ray tube positioned as far away as possible while maintaining adequate image resolution. A similar approach can be used to minimize exposure to medical professionals. Scattered radiation&#;the type of radiation that surgeons, interventionalists, and operating room staff commonly encounter during procedures requiring fluoroscopy&#;follows an inverse square law. Scattering exposure levels decrease proportionally with the inverse of the distance squared from the x-ray source. Staff can lower their exposure levels by a factor of four by doubling their distance from the source. Through this simple concept, occupational radiation exposure can be dramatically reduced.

Physical radiation shielding can be accomplished with different forms of personal protective equipment (PPE). Some fluoroscopy suites contain ceiling-suspended lead acrylic shields, which can reduce doses to the head and neck by a factor of 10. Portable rolling shields, which do not require installation, can protect staff in operating rooms and interventional settings. These mobile shields have been shown to decrease the effective radiation dose to staff by more than 90% when used correctly.[12] In cases where it is not feasible to shield oneself behind a physical barrier, all personnel should wear leaded aprons for protection. Leaded aprons, which are required in most states, commonly come in thicknesses of 0.25 mm, 0.35 mm, and 0.5 mm. Aprons that wrap circumferentially around the body are preferred to front aprons, given their increased surface area coverage. In general, transmission through leaded aprons is typically between 0.5% and 5%. Leaded aprons should always be companied by a thyroid shield. Personal protective equipment also protects our patients. Patients should wear protective gowns in areas not being imaged, whether in plain radiographs, fluoroscopy, or CT scans. Leaded eyeglasses and should be at least 0.25 mm lead equivalents to provide adequate protection for the lens of the eye. Leaded glasses are commonly cited as the least worn piece of PPE in multiple studies, with compliance rates ranging from 2.5% to 5%.[13] Studies have shown a relationship between occupational radiation doses and cataract development before 50 in a large cohort of radiation technologists, specifically the posterior lens.[14] Interestingly, the opacification of the posterior lens, in comparison to the other locations, is relatively specific to radiation exposure. Regular use of leaded eyeglasses can reduce radiation exposure to the lens by 90%. The low compliance rate for wearing leaded eyeglasses demonstrates an area for improvement. Beyond the appropriate use of leaded aprons, proper storage and testing of the equipment are critical to ensuring its effectiveness. Lead garments should be checked every six months to assure their integrity, and leaded aprons should be hung rather than folded to prevent cracking.

Dosimeters are devices that measure cumulative radiation exposure. These devices should be worn by all hospital staff who encounter planned ionizing radiation. Unfortunately, in a significant number of healthcare settings, there is a paucity of monitoring and, thus, a lack of reliable data. Sanchez et al. reported that as much as 50% of physicians do not wear or incorrectly wear dosimeters.[15] Dosimeters should be worn both outside and inside the leaded apron for comparison of doses, and the readings should be analyzed by the facility&#;s radiation safety department. Raising awareness of the importance of dosimetry should be a priority for the occupational safety or radiation safety departments in health systems. Staff who comply with dosimeter regulations can receive feedback about where and when they are receiving radiation doses, which can help audit behaviors and promote increased safety awareness.

Other Issues

Since when I-131 was used for the treatment of thyrotoxicosis, the use of nuclear medicine for imaging and therapeutic procedures has increased at an exponential rate.[16] Nuclear medicine uses radioactive material to help diagnose and treat conditions such as cancer or cardiac disease. PET scans are an example of diagnostic imaging that involves injecting a small dosage of radiopharmaceutical material to image and measure the function of an organ. Medical administration of radiopharmaceuticals or external beam radiation therapy is used under the prescription of an authorized physician. Internal radiation therapy, or brachytherapy, is a form of nuclear medicine treatment where radiation is released from inside the body for treatment of cancer, such as non-Hodgkin lymphoma.[16] Brachytherapy comes with its side effects, which differ from ionizing radiation from medical imaging. The most common adverse reactions are thrombocytopenia, neutropenia, fatigue, nausea, vomiting, diarrhea.

Radiation exposure from various nuclear power plants has allowed us to develop basic principles of radiation protection to ensure the safety of employees and how to handle unplanned exposures. If an employee encounters a scenario where radioactive material has been spilled, it must be dealt with according to specific regulations. For example, radioactive materials should not be flushed down normal sanitation drains. They should be allowed to decay in an adequately shielded facility when they have half-lives less than 90 days.[17] Radioactive waste tags should be labeled and disposed of to radioactive waste departments. The secure storage of the waste should be maintained at all times.

Enhancing Healthcare Team Outcomes

As medical imaging evolves, so does the medical community&#;s understanding of how to protect people from ionizing radiation. The first step to optimizing safe radiation practice is educating hospital staff on radiation best practices. Each institution&#;s radiation safety department is responsible for educating and enforcing protective strategies. Protocol development and education strategies have been effective in multiple specialties. Simple interventions can play a major role in radiation dose optimization. For example, after a 20-minute video was used to educate physicians on radiation best practices, it was found to reduce median fluoroscopy time by 30% to 50%.[18] Justification, optimization, and adherence to dose limits can significantly decrease exposure when followed. Following the ALARA principle, health care workers should confirm that the benefits of the exposure outweigh the risks and strive to decrease radiation exposure as far below the dose limits as practical.

Figure

Figure 1: ICRP Dose recommendations Created by Nicholas Frane, DO

Disclosure: Nicholas Frane declares no relevant financial relationships with ineligible companies.

Disclosure: Adam Bitterman declares no relevant financial relationships with ineligible companies.

Want more information on acousto-optic q-switch driver? Feel free to contact us.

61

0

Comments

0/2000

All Comments (0)

Guest Posts

If you are interested in sending in a Guest Blogger Submission,welcome to write for us!

Your Name:(required)

Your Email:(required)

Subject:

Your Message:(required)

0/2000