What Are Post-Tension Slabs & Why Are They Used?
What Are Post-Tension Slabs & Why Are They Used?
Its no secret why builders use post-tensioning systems in their construction; these systems are critical to strengthening concrete used in modern large-scale building projects. The same argument applies to post-tension slabsa method used when pouring the slab foundation in commercial or residential construction. This article further explores post-tension slabs and some of the advantages and challenges of their usage in construction projects.
Link to Ruiyi
What are Post-Tension Slabs?
The concrete industry started experimenting with strategies and techniques to strengthen and reinforce concrete in the s. The prestressing concept, now a standard in residential and commercial building construction, involves using a steel cable or tendon to squeeze and compress concrete before the concrete endures a structural load. As the construction industry continued refining its techniques to standardize prestressing, most builders eventually began using post-tensioning techniques for reinforced concrete slab foundations. The Federal Housing Administration officially endorsed the use of post-tensioned slabs in , and the building method is now embraced and co-opted as the preferred method for builders.
Post-tensioned slabs contain a tendon, or steel cable, that runs crisscrossed throughout the center of the slab after the concrete has already hardened. As the poured concrete dries, the post-tensioned cables stretch and tighten, which applies a significant force to the concrete slab. This technique strengthens and compresses the concrete, which helps reduce cracking and structural instability caused by unstable soil conditions in marshes, swamps, and lake areas. The process helps residential homes and commercial buildings achieve greater load-bearing strength. Post-tension slabs are more durable and stable than traditional slabs that lack the reinforcement of steel cables.
Why Use Post-Tension Slabs?
Concrete slabs have inherent structural weaknesses; they are especially susceptible to expansion and contraction due to seasonal fluctuations and changing temperatures. Anyone that has experienced winter knows that thawing temperatures usually lead to potholes, broken water mains, and cracks in the pavement. Concrete slabs are no exception. The swelling and contraction of soils based on their contact with water is another element that adversely affects the integrity of concrete slabs. Poor and unstable soils found in Southwestern states and Mexico lead to issues with soil expansion, making it difficult for builders to lay concrete slabs.
Builders depend on post-tension slabs to reduce the risks of cracking, contraction, and soil expansion and strengthen the foundations structural integrity.
Post-Tension Slabs: Potential Challenges
Post-tension slabs are stronger than traditional concrete slabs; however, that does not necessarily mean a post-tension slab is without challenges. Read on to learn more about builders challenges when using post-tensioned slabs.
Long-Term Planning
Post-tensioned slabs are an excellent foundation for a new structure, but builders must plan accordingly for proper drainage. Gutters, downspouts, roof pitches, and balconies redirect rainfall. Builders need to be aware of the location of drainage as it can seep into the foundation and lead to cracks.
Good Things Arent Cheap & Cheap Things Arent Good
Laying the foundation of a post-tension slab requires professional workers, quality materials, and expert knowledge to understand the jobs complexity. In the building and construction industry, its essential to research the service provider and contractors you partner with before signing a contract.
Check the Blueprints, Again
Since post-tension slabs require the addition of steel tendons to strengthen and reinforce the concrete, the tendons must precisely align as shown on the blueprints. Improper tendon locations can cause uplifting, as the tendon applies more force than the weight of the concrete. As a result, the concrete might be physically lifting the slab.
The Advantages of Post-Tension Slabs
Aside from producing crack-free tennis courts, smooth parking garages, and a secure foundation for someones new home, post-tension slabs offer builders an array of advantages compared to traditional concrete slabs. Here are a few of the major benefits.
Cost Savings
Post-tensioned slabs require less concrete than traditional ones, saving builders money. Post-tensioned slabs are an investment that helps homeowners reduce the risks of concrete contraction and cracks, which inevitably costs money to repair. Thats why post-tensioned slabs are an initial investment worth it in the long run.
Shed Some Weight
A lighter yet stronger slab of concrete allows builders to design their structure with less material and overall surface space, providing more space to build supporting pillars, walls, columns, and beams. Post-tensioned slabs are also thinner, giving builders more creative freedom when designing floors.
Minimize Risks
No matter how much planning goes into a construction project, things happen, and the idea for builders is to minimize risks. Post-tensioned slabs may help prevent cracks from forming, but concrete is not immune to the elements. The good news is that if cracks form on post-tensioned slabs, they are held together and do not spread as quickly as those on traditional foundation slabs. Therefore, post-tensioned slabs are a more durable solution.
Look to the Experts when it comes to Building Repair Services
Commercial and residential structures require rational planning and maintenance. Whether your building has a traditional concrete slab or a reinforced post-tensioned slab, building owners need to maintain the structures integrity. Thats why across the United States, owners and property managers rely on Valcourt as their trusted partner to protect their investments. Whether its waterproofing, restoration, or other commercial building services, Valcourt offers over 35 years of experience protecting properties from the elements. Contact Valcourt Building Services today!
Post-Tension Concrete: History, How It Works, Pros & Cons
Post-tension concrete may be a mythical method for some contractors.
However, some projects can greatly benefit from this prestressing method.
Additionally, concrete contractors should implement post-tensioning in a variety of situations.
This article will cover post-tension concretes what, when, how, and why.
What Is Post-Tension Concrete?
Post-tensioning is a method of prestressing concrete. Prestressing concrete is when concrete has added compression internally. Doing so counteracts the external loads that will be placed on it.
Post-tensioning adds reinforcement and strength to the concrete with tensioning steel rods.
As the name implies, this prestressing happens on-site after the concrete has fully dried.
Now, many people understandably mistake it for pre-tensioning.
Pre-tensioning is when the steel strands are tensioned before placing them into the concrete. This step usually occurs during precast concrete construction.
History of the Post-Tension Method
A French man, Eugene Freyssinet, often receives credit for being the first to use post-tension concrete in for a marine terminal.
It wasnt until that the construction of the Walnut Lane Bridge in Philadelphia relied on post-tensioning.
These days, this method is so popular theres an entire institute dedicated to advancing the industry The Post-Tensioning Institute.
Planning a commercial construction project in Colorado? Chat with us today to discuss your visions!
How Does Post-Tensioning Work?
To understand how post-tensioning works, you need to learn about the behaviors of the two materials involved:
Concrete and steel.
Concrete is strongest when it is under compression. Meanwhile, steel is strongest under tension.
Post-tensioning combines both materials in their strongest states.
The result?
A concrete slab that can resist much higher loads than traditional concrete structures.
Who would have thought reinforcing steel was the best way to create reinforced concrete?
Adding rebar alone can improve the durability of concrete under tensile stress. Yet, post-tensioning improves that while adding strength to the concrete through compression.
How To Install Post-Tensioning
To install a post-tensioning system, you need specific tools while following a specific series of steps.
Equipment Needed
A hydraulic jack is the only piece of working equipment youll need on your job site to implement post-tensioning.
The size and strength of the concrete members are being prestressed. Post-tensioning involves the elongation of very high-strength steel.
A powerful hydraulic stressing jack will pull on the prestressing steel without causing a malfunction.
Materials Needed
There are several materials involved in post-tensioning structural concrete:
1. Tendons
Post-tension cables also known as tendons are made from a seven-wire braided steel cable. These tendons are very strong and can yield up to 243,000 psi.
There are two different types of tendons.
A bonded tendon uses grout to permanently bond the tendon to the sheathing.
With an unbonded tendon, grease is used, and the tendon is free to move within the sheathing.
2. Tubes or Ducts
To protect the tendons from corrosion from the water in the poured concrete, it must be placed inside a tube.
These can be made from thin sheet metal pipes, plastic ducts, or tubing. The seams should overlap to prevent any seepage from occurring.
3. Anchors
Anchors are vital in applying tensile forces to the tendons while keeping the tensile forces in place.
These devices attach to the tendons and anchor them into concrete on one end while the anchor on the other side attaches to the jack.
Steps to Take
There are a few steps to follow to create a post-tensioned concrete slab.
Heres a look at the process:
- After the concrete formwork is built but before the concrete is poured, the tubing filled with tendons is placed flush alongside the rebar.
- The concrete can then be poured, being extra careful not to allow any to get into the tubing. Its also important to keep the tubing in the correct spacing during the pour.
- The concrete is allowed to cure to about 75% of its drying time, which is about 23 days.
- The post-tensioning tendons are stressed with the hydraulic jack to 80% of the strands tensile strength.
For example, a ½-inch 270 strand should be stressed to 33,000 pounds, according to PTI.
Lastly, the steel tendons are anchored into place, the ends are trimmed, and grout is placed into the anchor pocket to secure them.
The Benefits of Using Post-Tension Concrete
You may wonder if all this extra work is worth the effort. Lets discuss the benefits you can reap using this method on your concrete floors.
Design Freedom
Post-tensioning gives architects more design freedom. The method allows for fewer columns and thinner slabs to support the rest of the structure. After all, the concrete slabs are now beast-mode strong.
Post-tensioning also allows architects and engineers to create structures with dynamic designs.
Reduced Floor-to-Floor Height
If you are looking for more details, kindly visit post tension system solutions.
Additional reading:Factors to consider when purchasing a vibrating screen
What to Know About Low Carbon Steel Welding Electrode?
Post-tensioning also saves floor-to-floor height in commercial buildings. This allows for more floors to rent out without changing the building height. Not only does this save money, but it also provides the opportunity to make more money as well.
This reduced floor-to-floor height also translates into cost savings for:
- Electrical
- Plumbing
- Other construction costs
Think about all the savings that could occur when you cut the height of a building. Elevator shafts are shorter, requiring less material. The building facade will also require less material.
Maintenance costs will be much more efficient, too. Heating and cooling a smaller building is cheaper. Insurance will be cheaper.
In fact, there are many often forgotten savings that come with a reduced floor-to-floor height.
Lower Risk of Concrete Repairs
Post-tensioning also lowers the chances of cracking due to shrinkage and improves the durability of the concrete. So youll see far fewer deflections and experience increased service load capability.
Lessen Dead Load and Reinforcement Cost
Theres also another way that post-tension concrete saves money:
It reduces the cost of reinforcement by lowering the amount of rebar needed. Post-tension steel tendons are cheaper than rebar. The reduced concrete and reinforcement weight also reduces the dead load on subsequent levels.
Faster Project Completion
Lastly, youll see a much quicker construction process. This is because post-tensioning increases the strength of the concrete prematurely. So the formwork removal happens earlier.
This benefit also results in the follow-on trades and project completion happening faster.
Pros and Cons of Post-Tension Concrete
Most projects would benefit from the use of post-tensioning. Some would especially benefit. But, of course, there are also some rare occasions when post-tensioning may not be the best course of action.
Lets talk about the pros and cons of this method now.
When Post-Tensioning Is a Pro
There are times when post-tensioning can bolster your concrete structure and is a no-brainer, and times when its a must.
Below is a list of scenarios that should implement post-tensioning in their concrete construction process to ensure a successful project, as mentioned in this publication from PTI.
Wind and Seismic Resistance
We know that concrete can withstand an extreme load through direct compression. But its also very susceptible when undergoing lateral forces.
Wind and seismic forces can be catastrophic for some concrete structures.
Using post-tensioned slabs provides the reinforcement necessary to resist these powerful lateral forces.
Skyscrapers
The taller a building gets, the greater the need for lighter construction.
Post-tensioning makes taller skyscrapers possible by allowing for less material needed for each level. This reduces the dead load on each of the lower levels.
Conventional reinforced concrete is much heavier. That said, it also limits the buildings height before its too heavy to support its weight.
Curvilinear Geometries
At times, the vision inside an architects creative brain wont translate inside an engineers logical brain.
Curvilinear geometries create stunning structures that were once a severely complicated process. In the past, these required many engineering solutions with high costs and extensive time investment.
The ability to use post-tensioned concrete slabs made this process much more feasible. To this day, its the most widely accepted method to create these architectural works of art.
Longer Spans
Creating a long span inside a concrete building once called for many pillars, columns, and thicker concrete slabs.
Post-tensioned concrete slabs are stronger and lighter in weight. As a result, they can create longer spans without the need for pillars and columns for support.
Elevated Slabs
Post-tensioning distributes the weight of the concrete to help prevent any sagging in elevated slabs.
When Post-Tensioning Is a Con
Post-tensioning will always increase the strength of a concrete slab. Yet, the methodology behind this innovation can make it disadvantageous on rare occasions.
These include:
Future Renovations
Once post-tensioned slabs are in place, theyre permanent. Theres no cutting or rearranging these slabs after this point.
Therefore, if youre constructing a commercial building with hopes of a redesign later on, prepare for disappointment.
Of course, you can work around this if you plan for this redesign in the original design, leaving room for future knockouts or openings.
When You Have No Access to a Professional
Post-tensioning concrete is a complicated and precise process that requires skilled labor.
If you dont have professionals with experience using this method, its better not to use it at all.
For post-tensioning to work, it must meet very precise specifications. The forces applied and the machinery used can also be very dangerous in the hands of an amateur.
Mistakes to Avoid When Post-Tensioning
When done properly, post-tensioning is a fool-proof engineering technique. But some mistakes can occur along the way.
To ensure that you get the most out of your post-tensioning efforts, avoid these common mistakes:
1. Dont Forget To Account for Restraints
In many structures, youll have restraints to the compression of the concrete. These include walls, columns, and other structures in place.
Youll need to consider these when positioning your post-tension tendons.
2. Not Prioritizing Your Finishing
After youve pulled the tendons and anchored them, itll leave behind some strand tails that require cutting.
However, these ends require a bit more work to finish the process. The end caps must be installed, cleaned from debris, and filled with mortar to seal the tendons.
3. Overbalancing Your Dead Loads
While load balancing can extend 100% dead load, pushing this too far can result in a defective slab.
Using post-tensioning in place of proper design will cause overbalancing. Its not like rebar, where you can just add more and more. It requires precise amounts.
4. Relying on 3D Software for Design
Finite element software is helpful in the design process with post-tensioning. Yet, a PT professional must check all designs for correct calculations before construction begins.
As this article pointed out, post-tensioning is an engineering innovation that can and is applicable in various projects to improve the integrity of the construction further.
This method can improve the quality of your project. But it can also save you money, time, and maintenance and provide more freedom in your design process.
Here at FMP, weve successfully implemented post-tensioning in many of our clients projects, and weve seen first-hand the benefits of that choice.
Curious about this process?
The company is the world’s best post tension anchor supplier. We are your one-stop shop for all needs. Our staff are highly-specialized and will help you find the product you need.
Wed love to discuss how post-tensioning can improve your construction project. Contact us today!63
0
0
Comments
All Comments (0)